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Abstrad. It is shown that self-similarity of a quasilattice has a profound effect on the 
periodic approrimants to the quasilattice: The periodic approximants are grouped into 
series so that (i) each series is generated from its prototype by a successive application of 
the deflation-and-rescaling, (ii) the space group is common among the members of the 
series and (iii) the unit cell of the approximant is scaled up by 7 with the series number, 
where I is the scale of self-similarity ofthe relevant quasilattice. These results are exemplified 
with application to the case of the octagonal quasilattice. 

1. Introduction 

The structure of a quasicrystal is described with a quasilattice (QL), while that of its 
approximant crystal is described with a periodic approximant (PA) to the QL (Elser 
and Henley 1985). We have developed a theory of the space groups of the  PA^ to a QL 
(Niizeki 1991a, b); a QL has PAS with different lattice constants and different space 
groups. 

Self-similarity is one of the remarkable properties of a QL (see, for example, Niizeki 
1989a). That is, if we select lattice points whose environments agree with one of a set 
of specified environments, the resulting set of points form another QL which is locally 
isomorphic to the original one except for the scale. The scale T of self-similarity is 
equal to a pv-unit of the algebraic field relevant to the QL. In contrast, a PA to a QL 

cannot have self-similarity because it is periodic. There exist, however, a group of PA$ 

whose unit cells are similar and the lattice constants of different members are scaled 
by powers of T (Elser and Henley 1985, Duneau, Mosseri and Oguey 1989, herafter 
referred to as DMO). In this paper, we will show that there exists a more precise relation 
among the members of the group. 

A QL is obtained by the cut-and-projection method from a mother lattice which is 
a periodic lattice of higher dimensionality than the physical dimension (see, for 
example, Janssen 1988); the mother lattice is cut with a strip before being projected 
onto the physical space. Similarly, a PA to the QL is obtained by the same method from 
its mother lattice, which is obtained by introducing a phason strain into the mother 
lattice of the QL (Ishii 1989). The phason strain makes a lattice plane of the deformed 
lattice overlap the physical space perfectly (Niizeki 1991a). 

The previous theory of construction of a PA focuses on the point symmetry of the 
PA (Ishii 1989). Since there exist several Bravais classes with a given point symmetry, 
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4874 K Niizeki 

we have to determine the Bravais class to which the PA belongs (Niizeki 1991a, b). On 
account of this complication the theory is inconvenient as the basis of the present 
theory. Therefore, we will reformulate the theory focusing on the Bravais lattice of the 
PA (cf Verger-Gaugry 1988). 

The theory of PAS has been developed in DMO along similar lines to the present 
one although the symmetry aspect of the PAS is only briefly considered. However, their 
method of obtaining PAS does not use deformed mother lattices but strips which are 
not parallel to the physical space, so that it does not fit into the theory of the space 
groups of the PAS (Niizeki i99iaj. They confined, furthermore, to the case where the 
mother lattice of the QL is a simple hypercubic lattice. Their theory shares, nevertheless, 
several important points with our theory. 

We investigate in section 2 the properties of the lattice planes of a higher- 
dimensional lattice. We investigate in section 3 the mother lattice of a QL and in section 
4 those of the  PA^ to the QL. In section 5 ,  a QL is constructed by the cut-and-projection 
method from its mother iatrice and its seif-simiiarity is investigated. i n e   PA^ to the Q L  

are constructed in the same section from their mother lattices. We show also that the 
PAS are grouped into different series so that each series is generated from a prototype 
approximant by a successive application of the deflation-and-rescaling. In section 6 
we apply the theory to the case of the octagonal QL. Sections 4 and 5 will be more 
easily understood if they are read in parallel with this section. Section 7 is devoted to 
>!-.~~..:.-. uIscusY1ons. 

2. Lattice planes of a higher-dimensional lattice 

Let E, be the D-dimensional Euclidean space and L ( c E , )  a D-dimensional Bravais 
lattice. Then it forms a Z-module (an additive group); a , ,  II’E L +  n,a ,+n,o ,E L 
V(nl, nJ E 2’. Let a , ,  a2, . . . , ap E L with 1 S p  < D and assume that they are linearly 
independent over R. Then they span a p-dimensional subspace II, of E ,  and 

(n,, n 2 , .  . . , n,) E Zp 

is a p-dimensional Bravais lattice generated by aj. Since Z[a,, a’, . . . , a,] c L n  n,, 
n, is a p-dimensional lattice plane of L. More precisely, n, is a lattice direction and 
II, = E,,. We shall call {a , ,  a2 , .  . . , ap} a maximal set if Z[a, ,  a’, . . . , an] is equal to 
L,~Lnn, .Amaximalset isabasissetofL, ,whileZ[o, ,az,  ..., a,]inanon-maximal 
case is a superlattice (sublattice) of L,. 

any integer n ( > I ) .  All the members of a maximal set must be prime vectors. 
We may say that two sets of linearly independent vectors of L are equivalent to 

each other if both generate an identical lattice. Let { a : ,  a; ,  . . . , a ; }  be another set of 
linearly independent vectors. Then this set is equivalent to the original one if 
( a , a 2 . ,  , ap)  = ( a : a ; . ,  .ab)M with M E  GL,(Z), where (a la2 . .  .ap), for example, is a 
D x ,D matrix obtained by juxtaposing ai. 

If ( a , ,  a 2 , .  . , , aD) is not a maximal set, we may write ( . ,a2. .  .ap)= ( a i a i .  . .ab)M 
with M being a p x p  integer matrix and { a : ,  a ; ,  . . . , ab} a basis set of L,. Then Idet(M)I 
(> 1)  represents the number of the lattice points of L,, in a unit cell of Z[a, ,  a’ , .  . . , a,]. 
The set of primed vectors is called a reduced form of the non-maximal set. 

If {a:! is a maxima! set7 we sha!! ca!! a;  a prime lattice vector because c , / n  $ L for 
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Let {a , ,  a2,. . . , a,,] he a maximal set generating a lattice L,,. Then its every subset, 
e.g., { a , ,  ( 1 2 , .  .. , aq) ( q ' p ) .  is maximal, too. A necessary and sufficient condition 
for { a , ,  a*. . . . , a,,) to he a maximal set is that there exists another maximal 
set {a,+,, an+,, . . . , a,) such that { a I ,  a 2 , .  . . , a,} is a hasis set of L. We may say 
that the two sets {al, a2 , .  . . , ap)  and {ap+l, (Ipt2,. . . , a") are complementary to each 
other and so are the two lattices L, and LD-D = Z[a,+, , a,,,, . . . , a,]; L = 
L, + L,-,(= { I ,  + I , /  I ,  E L,,, I ,  E Lo-,)). Note that LD-p is not uniquely determined 

We consider at the moment the case L =  ZD, which is composed of integer vectors. 
a E 2" is a prime vector if the greatest common measure among its components is 
trivial. Let a , ,  a 2 , .  . . , ap E Z" and assume that they are linearly independent. Then 
K ~ ( a , a ,  ... a,)isaDxpintegermatrixwhoserankisequaltop.{a,,a,, 
p = D  is maximal if K is unimodular. Therefore, we say that K with l s p < D  is 
unimodular, too, if {a , ,  a>,  . . . , an) is a maximal set. This is a natural generalization 
of unimodularity to the case of a rectangular matrix. The set of all D x p  unimodular 
matrices is denoted by Um( 0, p )  (Um( D, D )  = GL,(Z)). 

A necessary and sufficient condition for K to be unimodular is that there exists a 
D x ( D - p )  unimodular matrix K such that Ku K'EGL,(Z), i.e. K is embedded into 
a conventional unimodular matrix. We may say that K and K' are complementary to 
each other. Note that K is not uniquely determined by K. 

IfKEUm(D,p),thensoareKMandM'Kwith M E G L , ( Z ) ~ ~ ~ M ' E G L , ( Z ) . W ~  
shall define that K, K ~ u m ( D , p )  are equivalent if K =  K'M with MEGL,(Z). In 
particular, K and -K are equivalent. On the other hand, if K is a D x p  integer matrix 
hut not unimodular, it is decomposed as K'M where K E Um(D, p )  and M is a p x p 
integer matrix. If the rank of K is p ,  we obtain Idet(M)I > 1. Then K' is called a reduced 
form of K. K' is not uniquely determined by K but its equivalence class is. 

According to the theory of elementary divisors of an integer matrix (see an appropri- 
ate textbook of algebra), there exists an algorithm for the above-mentioned decomposi- 
tion: K = K M .  The theory tells us also that K is unimodular if and only if the 
determinants of all the p-dimensional minors of K have no other common measures 
than * l .  In particular, K is unimodular if one of the determinants is equal to 1 or -1. 

MJ' with M EGL,(Z). If J e U m ( p ,  D ) ,  then it is embedded into a p x  D block of 
M E GL,(Z), so that we can conclude that {Jn In E Z") = Z" because {Mn In E Z") = 
z D .  That is, J represents a surjection from Z" onto zp. Conversely, if a p x D integer 
matrix J has this property, it is unimodular. 

If K ~ u m ( D , p )  ( l < p < D ) ,  there exists J e U m ( D - p , D )  such that JK=O. J is 
called a dual unimodular matrix to K and is denoted as K'. K' is not uniquely 
determined by K hut its equivalence class is. 

We will return to the general case where Lis  spanned by a basis set { E , ,  E ~ ,  , . , , E ~ } ;  

L = {Z, n , E ,  I ( n , ,  n 2 , .  . . , n D )  E Z"}. Let n, he a lattice plane of L and {al,  a > , .  . . , a,) 
a hasis set of L,=LnlT,. Then, there exists K E U ~ ( D , ~ )  such that (ala 2 . . . a p ) =  

E,)K and we can index II, by K, which is equivalent to a (pD)-dimensional 
i~:ege; v e ~ o ; .  !E fac:, K is fiat cniqi;e!y determined by E, but i!s equiva!ence c!as is. 

Alattice direction II, is indexed by a column integer vector K, which is represented 
kD]. More generally, x = X, h , ~ ,  E ED is indexed as [ h , h , . .  . h,] .  The 

index K of a 2~ lattice plane 112 will be represented with brackets as 
m,], where the first (or last) half of the integers show the first 

(or second) column of K. 

I__. uy L,. 

iii- ALL-TT...," n \ - r ? u l w - r r - . / n  -\1 I w - r ~ . - f -  n\ n-aa-..:.rni-.-r:c I- 
" * ~ U C , , l L c i  u"1,~,",=~R~'\tU'L1,U,~,,.","C"lrl,~,", c L ' L L y u " L L 1 C " L 1 1  "- 
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Let J = K’. Then, lIP can be indexed also by J. This index scheme is called the 
dual index scheme to the one by K. It is is a generalization of the Miller index used 
in indexing a lattice plane of a three-dimensional lattice. It is useful when D-p, the 
codimension of the lattice plane, is smaller than p .  In this index scheme a hyperlattice 
plane lID-l is indexed by a row integer vector J, which is represented as ( j l j 2 . .  . jD) .  
Similarly, the dual index J of a (D-2)-lattice plane will be represented with 
parentheses as ( n 1 n 2 . .  . n u / m , m , .  . .ma) .  

Let U be a linear transformation which leaves L invariant. Then u ( e , e 2 . .  . E ~ )  = 
( & , e 2 . .  . e D ) M  with M E  Gi,iZ).  A iattice piane ii, indexed by K is transformed by 
U to another one II; = U& and the index of II; is given by K‘= MK. IIp is invariant 
against U if there exists M E  GL,(Z) such that MK = KM, i.e. K is equivalent to K. 
This equation is a different expression of the equation u(a ,a2 . .  . a p )  = ( a l a 2 . .  .a,)M’ 
with (ala 2 . . . a o ) = ( e I e 2 .  ..eD)K. 

3. The mother lattice of a quasilattice 

We take a non-crystallographic point group G in d-dimensions with d = 2 or 3 and 
assume that it has a faithful unimodular representation whose dimension is equal to 
D = 2d. The representation is equivalent to a D-dimensiona) point group 6, which is 

Euclidean space E ,  onto which 6 acts is decomposed into two d-dimensional invariant 
subspaces, ED = Ed @ E & ,  and the restriction of 6 onto Ed is identical to G. We shall 
call Ed the physical space and E &  the internal one. 

Let G be the restriction of G onto E & .  Then it is the same d-dimensional point 
group as G .  The two bijections G t G + G ’  induce a bijection p :G+G’, which is an 

example, the rotation through 2 ~ / 5  in the case of G = lOmm is mapped by p onto the 
rotation through 4 ~ / 5  in G‘. 

Let E , ,  e 2 . .  . ., E ,  be the basis vectors of the unimodular representation of G. Then 
the D-dimensional lattice 

a fini:e subgroup &:he E-dimensional oiihogoiial gioiip. c- is isomoiphii io G. The 

ismorphism. Eowever, q is Rot isomorphism as d-dimensiona! point gro”ps; for 

is a Bravais lattice which is invariant against 6.  We assume that 6 is the point group 
of L. Then G and G as well as.6 include ‘,he inversion operation. The space group 
of L is given byg={{u1I}IuEG, [ E L ]  ( - G * L ,  the semidirect product). 

Let x E E,. Then g(x) ={a In E g, a x  = x} represents the point symmetry of x with 
respect to L.. & r ) = { ~ i ! ~ i l t ~ f ( x ) !  is a_ subgoup of G and is called the point 
group of x. x is called a special point if 6(x) is a centring group. 

The point groups which fit the above considerations are restricted to Xmm (Dd, 
lOmm (Dl0) and l2mm (D,2) if d = 2  and m35 (Yh) if d = 3  (Janssen 19x8). In the 
case of d =2, there exists only one Bravais class for each point group. That is, we 
have three four-dimensional ( 4 ~ )  Bravais lattices, p8mm, plOmm and pl2mm. On the 
other hand, there exist three 6~ lattices, Pm35, Fm% and Im% for the case of d = 3. 

Let P and P‘ be the projectors onto Ed and E & ,  respectively. Then e,= PE, (or 
e l = P ’ e j )  are linearly independent over Z and the Z-module Lp= PL= 
{Zj njej I (nl ,  n 2 , .  , . , nD) E ZD} (or Llp- P’L)  is a dense set in Ed (or E & )  and called 
a pre-quasilattice. e! are subject to a unimodular transformation by the action of G 
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and L, is invariant against G. If I =Pi  niEi E L, then PI = Li niei and P'I = X i  h e : ;  
= (ei, e ; ) .  Ed has an incommensurate orientation with respect to L a n d  Ln Ed = I O ) .  

Let ~ = l + f i ,  2+& or 2 + 8  for p8mm, pl2mm and F"%, respectively, but 
T = ( I  + f i ) / 2  for plOmm, Fm% and Im%. Then the D-dimensional linear transforma- 
tion 6 = 71 0 7'1 with I being a d-dimensional unit matrix and T' the algebraic conjugate 
of T induces a unimodular transformation among E ! :  

~ ( E , E ~ .  . . sD)  = ( E ~ E ? .  . . E ~ ) M  (2) 

where M E  GLD(Z) .  It follows that ;L = L. i acts as a scale transformation onto each 
of the two subspaces Ed and E &  and is commutable with G. Note that the row vectors 
of (e,e2.. . eD)  (or (eie;. . .&)) are left eigenvectors of M with respect to its eigenvalue 
T (or T') and  IT'^= 1/r  ( < I ) .  

We exclude hereafter the case of pl2mm from our considerations. Then T satisfies 
the quadratic equation T'= m T + l i  where m = 1% 2 or 4 according as ~ = ( 1 + 8 ) / 2 ,  
1 + A o r  2+fi, respectively. It follows that T'= -l/r. The Fibonacci numbers or their 
analogues are defined by the recursion relation U,+, = muh + uk-l with uo = 0 and U, = 1. 
uh+,/uk is a best approximant to T. From T'= mr+ 1 we obtain T~ = uCr+ uk- ,  . Accord- 
ingly M 2 = m M + I  and M k = u k M + u k _ , l .  

Let II, be a d-dimensional lattice plane of L and assume that K E  Um(D, d )  is its 
index. Then the slope of the transformed lattice plane IIl- in, relative to Ed is 
smaller than that of nd because 6 enlarges Ed but shrinks € 2 .  If i is operated 
successively onto nd, we obtain a series of lattice planes, IIa) = ( i)*nd, k = 0 ,1 ,2 , .  . . , 
which tend to Ed (DMO). IIp' is indexed by K, = M k K =  u,K'+uk_,K with K = K M  
(= KI). 

Let J and J, be the dual indices to K and K,, respectively. Then we obtain 
Jk =J(-M-')'= ukJ'+ uk-,J with J'= -JM-' because -M-' satisfies the same quad- 
ratic equation as M. 

The point group of IId is defined by the maximal subgroup of 6 among those 
which leave nd invariant. The point group is common among IILk) because ? is 
commutable with 6. 

4. The mother lattices of periodic approximauts to a quasilattice 

Let us deform L by introducing a linear phason strain so that its lattice plane nd 
coincides with the physical space E,,. That isL Ed is a lattice plane of the deformed 
lattice i and Ed is fully commensurate with L. We may write and = E d  and i= Q1L 
with being a D-dimensional transformation matrix associated with the phason strain. 
@ is divided into four blocks as 

where S is a d x d matrix representing the phason strain (Niizeki 1991a). Q1 acts onto 
Ed as the identity transformation. Note that det(@) = 1, so that the transformation is 
volume-conserving. 

Let di Then we obtain 

( n , , n 2  ,..., n D ) E Z D  (4) 
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Only the internal components of E ;  are changed by Q; Ci = (ec, P I )  with PI = ej + Se, 
or, equivalently, 

( 5 )  
Let KE Um(D,p) be the index of II,. Then the column vectors of ( E ~ E ~ .  . .eD)K 

span nd. It follows that P { ( . E 1 Z 2 . .  .E,)K) = O  because QII, = Ed and, consequently, 

( & P i .  . . Pb)K = 0. ( 6 )  
Let ( a , a  ~ . . . o , ) ~ P { ( , . E , . E ~ . . . . E ~ ) K l .  Then we obtain 

(ala2. .  .od)=(ele2...eD)K. (7) 

( P i & .  . . Pb) = (eie;. . . eb) + S(e,e,. . . eD).  

Inserting ( 5 )  into (6) yields A + S A = O  with A - ( a , a  , . . . a d )  and A=(e;e; ... eb)K, 
so that S = -AA-' .  Consequently, i as well as S is determined if IId  (or K )  is specified. 
Therefore i may be indexed by K. 

@(' ) -U@U- '  with U E ~  takes a similar form as (3) because U decomposes into 
two point groups acting on E, and E > .  Assume moreover that uii, = ii,. Then a"' 
as well as @ transforms nd to E$, so that ?"'=a on account of the uniqueness. 
Therefore @ is comltutable with H = {U I U E G, uII, = II,), which is nothing but the 
point group of I I d .  H acts on Ed (or E & )  as a d-dimensional point group H (or H') 
and 'p represents a bijection from H onto H'. In fact, H and H' are identical and 
crystallographic in d dimensions. Therefore S must commute with H and it takes the 

subspaces of H (cf Ishii 1989). In particular, S = AI if H is irreducible. 
The space group of i is given by 2 = fi * i. Note that H and H' as well as fi 

include the inversion operation. 
When L is deformed to i, x E E, is transformed to J= ax.  The point group I%(?) 

of I with respect to i is related to C(x) by fi(2)= f i n 6 ( x ) ,  which is a subgroup of 

f0m5 S i  Z ;  A;?;, where A i  are ioiistaiits and P; the projectors oiito ihe invariant 

fi./-\ E..--.. ---..:..8 --:-. ..F r hno :tl I-"-- :-f- --..-I r h -  ---..:-t -,.:-be ..F r 
",A,. L Y C L J  rysbmr y"1LL' "L L. ,,a> .I> 'laa"b,'aLG 'l , ,1""~ L L I G  "),CCL'U ),YLL,L" "1 L,. - 

The d-dimensional lattice Ld = Ln Ed is given by 

( n , , n ,  ,..., n, , ) cZd  . (8) 1 
Its point group is given by H and its space group by gd = H * L,. It is obvious that 
Ld = P ( L n & ) .  The point group H of L, is determined more easily than the point 
group fi of II,. fi can be obtained by lifting H up to the D-dimensional point group. 

Equation (6) shows that only d of Pi are linearly independent over Z, so that h: 
are given as linear combinations of d-vectors with integer coefficients. In fact, we may 
write 

(9) 
because of ( 6 ) ,  wnere b, E E ;  and J = K'. Since h; are projections of the basis vectors 
of L onto E & ,  b, must be linearly independent over R. Equations ( 5 )  and (9) show 
that P: are rational approximants to e: if S is small. 

The projection of i onto E &  is called the shadow lattice of i (Niizeki 1991a) and 
denoted by L, ;  L,-  P ' i .  Using (9) together with JE Um(D, d ) ,  we obtain 

( P ; ; ; .  . . &) = ( b , b 2 . .  . b, )J 

so that bj are basis vectors of L,. The point group of L, is given by H' (=H)  and its 
space group by 8. = H' * L,.  L ,  does not necessarily belong to the same Bravais class 
as that of Ld though the point group is common. 
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The projection L+ L, is a surjection, which together with the bijection L+ L,  yields 
another surjection: Xi niej E L, + Xc nib; E L,. The latter surjection may be represented 
by the symbol ‘p which represents the bijection H +  H’. Then p is extended naturally 
to a surjection from g p  H * L,  onto 8.. g p  is a quasi-space-group which is a subgroup 
of the maximal quasi-space-group, G * L,, of L,. Note that L,, is the kernel of the 
surjection ‘p : L p  - L,. 

We can write L, = P’L;, where L& is a complementary lattice to L,, ; L = Ld + L&. 
Note that P’L& is determined uniquely in contrast to L & ,  L,, is called a base lattice 
and LL a fibre lattice by Sadoc and Mosseri (1990). L& and L, are isomorphic as 
Z-modules and the basis vectors of L& can be so chosen that their projections onto 
E &  coincide with 6,.  

(i)k@(?)-k. Then it is written as (3) but S is replaced by Sk = (-l/r*)‘S, 
which represents a weaker phason strain than S. The lattice plane I ILk’=(i)kI I , ,  of L 
is transformed by Q k  to E d  ; @knLkJ = E,, because @IId Ed and ?Ed = E,.-Therefor? 
E,, is a lattice plane of ik = QkL. Using i L  = Land @ L  = L, we can rewrite as Lk = (?)*L. 
We shall call ik the kth generation of deformed lattices; i is the zeroth one. Two 
successive generations are related by i as ?fk = ik+, . 

Since ?= TIOT’I, we obtain LLkJ= i,n Ed = .*Ld (DMO), which is similar to L,,. 
Thereafter the basis vectors of LLkJ are given by a$kJ = #ai, i = 1 - d. Similarly, L:”, 
the shadow lattice of ik, is equal to T-*L,, which is similar to L,. The basis vectors 
of L:*’ are given by b$k)  = r-*bi, i = 1 - d. 

Let ak 

5. Construction of a quasilattice and its periodic approximants by the 
cut-and-projection method 

5.1. 7’he case of a quasilattice 

A QL (quasilattice) is obtained from L by the cut-and-projection method as Q(+, W) = 
{PIIIEL,  P ’ I + @ E  W), where + E E L  is the phasevector and W ( c E & )  the window. 
W is a polygonal (or polyhedral) domain which is invariant against G‘; the origin of 
E &  is the centre of the inversion symmetry of W. It is usual that W = P’T with r c E, 
being a polytope !e.g. a Voronoi polytope), which we shall assume hereafter. r is 
invariant against G. 

Q(=Q(@, W)) is a discrete subset of L p .  It has quasiperiodicityand its macroscopic 
point symmetry is given by G. Two QLS with different phase vectors but a common 
window are locally isomorphic. The average density of the lattice points of Q is 
proportional to vol( W). 

We now consider the self-similarity of a QL. We begin with the relation Q(+, W / T )  s 
Q(@, W) because W/TS W. Using X = L ,  we can show eaily that T-’Q(@,  W / T ) =  
Q(-T+, W) (Niizeki 1989a) and a subset of Q(+, W )  is locally isomorphic to itself 
i f i t isrescaled,Similarly,Q(+,~W)~ Q(+, w ) a n d ~ Q ( + , ~ W ) =  Q(-+/T, W),which 
is locally isomorphic to Q(+,  W). Q(+, W / T )  (or Q(+ ,  TW)) is called an inflation 
(ordeflation)ofQ(+, W).Theprocedureforobtaining~-lQ(+, W/T) (or@(+, TW)) 
is called inflation-and-rescaling (or deflation-and-rescaling). The two procedures derive 
from a QL new QL$ which are locally isomorphic to the original one; they are inverse 
to each other. A Q L  is self-similar in the sense that there exist these procedures. 

We shall rewrite the expression for Q(@, W) slightly for a later convenience. There 
exists x E ED such that + = P‘x. Then the shifted QL, Q(x, W )  = RI+ Q(4, W), is 
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written as 

Q(x, w ) = { P ( l + x ) l l € L ,  P ' ( I + X ) €  W } .  (11) 
I t  can be shown easily that the deflation-and-rescaling (DAR) of Q(x, W )  is equal to 
Q(&, W )  (see also the appendix). More generally, its kth DAR is equal to Q((?)'X, W ) .  

We consider here a special case where x is a special point of L. Then the origin is 
the centre of the global symmetry of Q(x, W )  (Niizeki 1989b); the point group is equal 
to G(x), the restriction of 6 ( x )  onto Ed. &?x)=e(x) but the special point Gx may 
not he equivalent to x; the point symmetry is not changed by the DAR but the local 
pattern around the centre of symmetry may be changed (Niizeki 1989b). The initial 
Q L  is recovered after a finite number of DARS. The number is the smallest one among 
those satisfying (7') 'x = x mod L. 

5.2. .The case oj-periodic approximanfs 

A PA (periodic approximant) to the QL given by (11) is defined naturally (Niizeki 
1991a) as 

&f, @ ) = { P ( l + i ) / l € f ,  P ( l + i ) €  G} (12) 
where f = @ x  and @=P'Or .  More generally, the kth generation of the PA is 
defined by 

(13) 
with ik = (.^)ki and eh = P'OJ. Here, the suffix k of oi= Qk(&,  ek) means that it 
is obtained by the cut-and-projection method from fk .  Wk is weakly deformed from 
W provided that the phason strain Sk is not too large, which we shall assume hereafter. 
The point symmetry of Gk ( 6') is given by  H'. In particular, @k = - @k, i.e., @k 

has the inversion symme_try. 
Let 6 = P ' i  and g5(q5) = (ala E 8.. a& = &), i.e. the point group of 4 with respect 

to L,. Then the space group of Q(2, @) is given by;,(i) = 'pp'(g.(q5)) (Niizeki 1991a), 
which is independent of ci! The translational part of the space group is given by Ld 
because Ld is the kernel of 'p. 

Q is called a regular PA if its point symmetry conforms to the Bravais lattice L,. 
In order to obtain a regular PA, it is necessary that & is located on a special point or 
a special line of L, (Niizeki 1991a). On the other hand, if i is a special point of 6, Pi 
is a special point of 0 and its point group is equal to H ( i ) ,  the restriction of H ( i )  
onto Ed (Niizeki 1991a). 

by gk = (<)kf b;! fig! by fk =e;*. Since 
i k = @ k ( ? ) k x ,  dk( ik ,  
of Q(x, W ) .  Owing to this definition, we can prove as given in the appendix that 

&ik, Gk) = { P ( I +  ik) I I € E,,  P ' ( I + i k )  € lek} 

1: is impogan! $bet u'p hiye &fin& 
is not a PA to Q(x, W )  but to Q((;h,  W), i.e. the kth DAR 

(14) 

It  is interesting that oh is obtained not only from ik by (13) but also from i by (14) 
with (12) (cf (22) in DMO). 

By the assumption that @k and @k-,  are not strongly deformed from W ,  we may 
assume that @k 3 7-l @k-, . Using this together with (12) and (14) we can easily prove 
that oh 3 &, (this is directly proved from (Al)).  It follows that & is obtained from 
Qk- ,  by the DAR and, con_vers$y,-Qk-, is obtained from Qk by the inflation-and- 
rescaling. The series of PAs, Qu, Q ,  , QZ , . . . , are generated from 0 (= 6) by a success!ve 
application of the DAR. In fact, (14) means that Qk is derived as the kth DAR Of Q. 

&(&, @ k )  = TkQ(<, T*@k) .  
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We cannot only descend a series of PAS by the DAR but also ascend it by the 
inflation-and-rescaling. One can ascend a step only when the window of the earlier 
generation includes T-' times that of the later one. Therefore, the series terminates in 
a finite step in the ascending direction becuase the deformation of the window becomes 
increasingly large. We shall call the terminal PA a prototype of the series because the 
series starts from it*and is descended by successive applications of the DAR. We can 
assume that 4 (:Q0) is t h e  prototypepA. 

The two QLS, Q(Z, T*W,) and Q(Z, W), have a common phase vector and they have 
the same space group. Thus, we have arrived at the main conclusion of the present 
paper: PAS to a QL are grouped into series so that each series is generated from their 
prototype by a successive application of the DAR and the space group is common 
among the members of the series. 

6. Application of the theory to the octagonal quasilattice 

An octagonal QL is obtained from the 4~ octagonal lattice L =  p8mm. Let E <  = (ei, e; )  
with e; E E, and elc E; be the basis vectors of L. Then e, (or el) are related to each 
other by e,,, = re( (or e;,, = r'ei) with i = 2,3 and 4, where r (or r') is the rotation 
through r / 4  (or -37r/4). It follows that leil (or le;l) take a common value, which we 
shall denote by a (or a ' ) .  Note that e! and e,,, are perpendicular to each other and 
so are e; and e;+2. 

Eight vectors *ei (or *e;), i = 1-4, represent the vertex vectors of a regular octagon, 
whose point groupjs 8mm. The 4~ rotation ?= r O  r' is an element of the point group 
G (1-8mm) of L. G is generated by i and the 4 0  mirror 6 which transforms E <  as 
~ ( E ~ , E ~ , E ~ , E ~ ) = ( E ~ , E ~ , E ~ , E , ) .  6 acts onto E, and E :  as ZD mirrors U and U'; 
6=uOu'. 

We can rescale E ;  so that a ' =  a. Then L coincides with a simple hypercubic lattice. 
Let r be the Voronoi cell of the origin of L. Then P T  is a regular octagon, which is 
the canonical window of the octagonal QL. The octagonal QL, Q(x, W) with W =  P'T, 
is formed of the vertices of the Ammann octagonal quasiperiodic tiling as shown in 
figure 1. 

L has six classes of special points (Niizeki 1989b. 1990). The six are represented 
by the symbols, r, X, C, M, R and 0, representatives of which are [OOOO], [ h 0 0 0 ] ,  
[hhOO], [hOhO], [Ohhh] and [hhhh]  with h = 1/2, respectively. The point groups of r 
and 0 are 8mm, those of X, C and R are mm and that of M is 4mm. The vertices of 
the octagonal tiling in figure 1 are derived from r, the mid-ponts of the bonds from 
X and the centres of rhombi (or squares) from C (or M). 

The octagonal QL has self-similarity with the scale T = 1 +a a shown in figure 1. 
The unimodular matrix associated with ?= d 0 7') is given by 

/ 1 1 0 - I \  

The eight mirrors of 8mm are grouped into two classes, X and A; a mirror of type 
X passes the mid-point of an edge of the regular octagon formed by *e j ,  while the 
one of type A passes a vertex. A representative of is U and that of A is ru. 
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Figure 1. The oaaganal quasilattice obtained from the 4~ octagonal lattice L by using the 
canonical window. The lattice points are given by the positions of the vertices of the 
octagonal Amman" tiling. The centres of squares (or rhombi) are derived from the special 
points of type M (or C) of L. The once inflated Q L  is superimposed with the dashed lines. 
A tile of the inflated QL share a common centre with a Similar tile of the original QL; both 
tiles are of the same kind but the orientations can be different. 

The series of Fibonacci number analogues associated with T ( = I  +a) is given by  
{U*] =IO, 1,2,5,12,29,  . . .}, in which the panty alternates. Let uk = uk+I - uk (= uk - 
Uk-1 ) .  Then, { v k } = { l ,  1,3,7,17,. . .} is a series of odd numbers and generated by the 
same recursion relation as that of uk. Note that u k / u k  is a best approximant to fi and 

A PA (periodic approximant) to the octagonal QL yields a periodic tiling with the 
same tiles as the octagonal quasiperiodic tiling. The area of a unit cell of a PA is written 
as C l =  N&+N,Cl,, where &=a' (or C l , = n 2 / f i )  is the area of the square (or 
rhombic) tile and Ns (or N,)  the number of the square (or rhombic) tiles in the unit 
cell. The total number of the tiles is given by N = Ns+ N , ,  which is equal also to the 
number of the lattice points in the unit cell. N increases in a series of approximants 
following the recursion relation Nk+, = 6Nk - Nk-, . Ns and N ,  increase in the same 
way. 

We shall investigate square approximants (p4mm) and rhombic ones (cmm). These 
approximants have two mirrors perpendicular to each other. Such mirrors in a PA must 
be of the same type (X or A). Therefore there exist four cases: (A) p4mm of type Z; 
(B) p4mm of type A; (C) cmm of type X; and (D) cmm of type A. 

Let us take the Cartesian coordinate systems for E, and E ;  so that the two axes 
coincide with the two mirrors. Then the phason strain must be a diagonal matrix; 
S12=S21=0. In the case o f a  square approximant, we obtain S,,=S,, and S = S , , I .  

Since all the special points (SPS) of L have the inversion symmetry,they remain as 
sps after the phason strain is introduced. The SPS of classes X ,  M and R have mirrors 

T k  = V k + \ / i U k .  
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of type A only, while those of type C have mirrors of type X only. The mirrors of an 
SP are lost by the introduction of the phason strain if they do not conform of the type 
(X or A) of the strain. 

A series of deformed lattices, i,, k = 0,1,2,. . . , is characterized by the index K 
of the prototype (=io). We choose a most important series from each of the four 
cases. The index K and its dual J are listed in table 1. The index Kk of the kth generation 
and its dual Jk are also listed. 

The phason strain S and the basis vectors (a,, a>) of L2 are as follows: 

(A) s = 7-11 (ez+ e,, -e, + e4) 

(B) s=-I ( e , ,  e3) 

( C )  SI, = 7-1 s,, = -7 (e2, e3) 

(D) s,, = -7- s,, = 1 (e ,  - e,, e, + e2). 2 

L, belongs to the same Bravais class as that of L2 except the case (D), where L, belongs 
to pmm. The unit cells are 45O-rhombi for (C) and (D) but their sizes and orientations 
are different between (C) and (D) because the relevant mirrors are different. PAS 

belonging to the case B are investigated in DMO and by Wang and Kuo (1988). 
We consider only regular approximants associated with the special points of L,. 

Several properties of the approximants are listed in table 2. Note, however, that most 
approximants incur symmetry breaking due to frustrations if the canonical window is 
used for Q (Niizeki 1991a). 

The prototype approximant of the case p4g in (A) is shown in figure 2, while that 
of p4mm(r) in (B) (or cmm(r) in (C)) is a square (or rhombic) lattice whose unit cell 

Table 1. The index K and its dual J of the four series af the deformed lattices. The first 
two columns refer to the prototype lattices, and the last two to their kth generations, where 
p =  q =  uk. I =  vk+,  and s =  uk. 

K J K k  4 

Table 2. Tlte space groups and other propenier of regular approximants of the four types, 
A, B, C and D. The Bravais classes of the four are shown in the second column. The 
second block of columns show the space groups when the phase vectors are located on 
the special points of L, (the shadow lattice) as shown in the first row; r, M. X and Yare  
indexed by [OO], [ h h ] ,  [hO]  and [Oh]  with h = ; ,  respectively. X and Y do not present 
regular approximants except for the case (DJ. Ns (or N,) is the number of the square (or 
rhombic) tiles in the unit cell, while N (= Ns+ N,) the number of the lattice points. 

r M X Y NS N R  N 
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Figure 2. The prototype approximant of the case of p4g in A. The centres of the squares 
are the special points of the point sroup 4, while the centres of the rhombi are those of 
mm. The Bravais lattice is a square lattice formed af the centres of square tiles with a 
common orientation. 

Figure 3. The fint generation (solid lines) of the case of pmm(r) in D and its inflation 
(dashed lines). The Bravais lattice is a rhombic lattice formed of the  eight-pronged vertices. 
The inflated lattice represents apart from the scale the prototype of the series. It has one 
square tile and two rhombic ones per a unit cell. 



Self-similarity of periodic approximanfs ro a quasilattice 4885 

is identical to the square (or rhombic) tile of the octagonal QL. Figure 2 has been 
recognized by Mai er al (1989) as an approximant to the octagonal QL. The first 
generation of the case pmm(r) in (D) is shown in figure 3 together with its inflation, 
which is superimposed. The second generations of the cases (A) p4g and (D) cmm(r) 
are shown in figure 4 together with their inflations. 

(4 

PIg!.'4 mc ICrolld gmrn_!inns "f!hC S P r k  "g in  .A ( c !  .Ed cmm(r! in D ( b !  !Oge!her 
with their inflations. The chained lines in ( a )  show the unit cell of the  Bravair lattice, while 
the circles in square tiles in ( b )  the lattice points. T h e  special points of (0 ) .  for example, 
are derived from those of classes M and C of the mother lattice. The QL farmed of the 
eight-pronged verlices in ( 0 )  is similar to  the prototype shown in figure 2. The inflated QL 

in (b)  is similar to the fin1 generation shown in figure 3. 
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7. Discussions 

Let U, be the d x D matrix formed by the internal components of t!.k', the basis vectors 
of ik. Then, it is written as U, = (b!k)b$hl.. . bikl)Jk,  which is rewritten as U, = BV,, 
where B=(b,b ,... bd) and Vk=(ukJ'+uk-,J)/~* with J '= - JM- ' .  It follows that 
V , = ( T ~ J ' + J ) / ( T , T + ~ )  with T ~ = U , / U , - ~  because T =uk7+uh- , .  and Uk tend to 
T and U = (eie;. . .eb), respectively, as k goes to the infinity, so that we obtain U = BV 
with V =  ( TJ'+ J ) / ( T ~ +  1). That is, the row vectors of V as well as U are left eigenvectors 
of M with respect to its eigenvalue 7'. It is interesting to prove it directly: We begin 
with the equality 

k 

BV = (Z;&. . . & , ) ( - & - I  + i)/(s2+ 1) 

derived from (9). The right-hand side is equal to U because we have (5) and the two 
equalities (e1e2.. . e D ) M - ' = ( e , e 2 .  . .eD)7-' and UM-'=-rU.  

The linear independence of ej over Z reflects in the expression U = BV in that the 
incommensurate ratio  is included in the numerator of V. Since T~ is a best approximant 
to T, we can conclude that U, is a best approximant to U. Incidentally, we note that 
the basis vectors bj of L, are determined directly by the equality U = BV if J is specified. 

The case of the dodecagonal QL differs from other cases in that T' ,  the algebraic 
conjugate of T (=2+&), is given by 1 / ~  but not by - l / ~ .  The theory developed in 
this paper is applicable also to this case with a minor modification. The dodecagonal 
QL has, however, another self-similarity with the scale T~ = (A+ l)/&but accompanied 
by a rotation through ~ / 1 2  (Niizeki 1989a). The theory can be extended so that this 
self-similarity is included. The result will be published elsewhere. 
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Appendix 

We begin with proving the following equality: 

o h ( i h ,  v ) = T o k - l ( i k - l ,  T v )  

where V is a convex domain satisfying V = - V. The conpition I E ik in the expression 
of ok(ik, V )  (see (13)) is equivalent to / =  8' with / ' E  L k _ , ,  so that we obtain 

Oh(<,, V )  = { P( a + ik) 1 I E i&, , P'( a+ ik) E V } .  (A2) 

On theother hand, P ( $ I + i k )  = P ( t ( I + i k - l ) )  = T P ( / + ~ , - ~ )  and, similarly, P' (? /+x , )  = 
- T - ' P ' ( / + x ~ - , )  because T ' = - ~ / T .  Moreover the condition - T - ~ P ' ( I + X , _ , ) E  V is 
equivalent to P ' ( / + i h * _ I ) ~  TV. Thus (Al) has been proved. 

Using (Al)  repeatedly, we arrive at 

&(&, v)=Tko( i ,  T * V ) .  (A3) 

Equation (14) is a special case where V = 6'k. 
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The proof of (Al)  is based on the two equalities, i, = fik-, and xk = T X ~ - ,  . We 
can prove (A3) directly in a similar way by using i, = (4)kL nd i, = (e)%. 

Self-similarity of the ideal quasilattice Q(x, W )  is based on the equality 
Q((4)kx, W ) = r X Q ( x ,  T ~ W ) ,  which is proved in a similar way by using the equality 

- ..- 

(4)kL= L. 
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